Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Workload-Aware Opportunistic Energy Efficiency in Multi-FPGA Platforms (1908.06519v2)

Published 18 Aug 2019 in cs.AR and cs.PF

Abstract: The continuous growth of big data applications with high computational and scalability demands has resulted in increasing popularity of cloud computing. Optimizing the performance and power consumption of cloud resources is therefore crucial to relieve the costs of data centers. In recent years, multi-FPGA platforms have gained traction in data centers as low-cost yet high-performance solutions particularly as acceleration engines, thanks to the high degree of parallelism they provide. Nonetheless, the size of data centers workloads varies during service time, leading to significant underutilization of computing resources while consuming a large amount of power, which turns out as a key factor of data center inefficiency, regardless of the underlying hardware structure. In this paper, we propose an efficient framework to throttle the power consumption of multi-FPGA platforms by dynamically scaling the voltage and hereby frequency during runtime according to prediction of, and adjustment to the workload level, while maintaining the desired Quality of Service (QoS). This is in contrast to, and more efficient than, conventional approaches that merely scale (i.e., power-gate) the computing nodes or frequency. The proposed framework carefully exploits a pre-characterized library of delay-voltage, and power-voltage information of FPGA resources, which we show is indispensable to obtain the efficient operating point due to the different sensitivity of resources w.r.t. voltage scaling, particularly considering multiple power rails residing in these devices. Our evaluations by implementing state-of-the-art deep neural network accelerators revealed that, providing an average power reduction of 4.0X, the proposed framework surpasses the previous works by 33.6% (up to 83%).

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.