Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Dual-Staged Context Aggregation Method Towards Efficient End-To-End Speech Enhancement (1908.06468v4)

Published 18 Aug 2019 in cs.SD, cs.LG, and eess.AS

Abstract: In speech enhancement, an end-to-end deep neural network converts a noisy speech signal to a clean speech directly in time domain without time-frequency transformation or mask estimation. However, aggregating contextual information from a high-resolution time domain signal with an affordable model complexity still remains challenging. In this paper, we propose a densely connected convolutional and recurrent network (DCCRN), a hybrid architecture, to enable dual-staged temporal context aggregation. With the dense connectivity and cross-component identical shortcut, DCCRN consistently outperforms competing convolutional baselines with an average STOI improvement of 0.23 and PESQ of 1.38 at three SNR levels. The proposed method is computationally efficient with only 1.38 million parameters. The generalizability performance on the unseen noise types is still decent considering its low complexity, although it is relatively weaker comparing to Wave-U-Net with 7.25 times more parameters.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.