Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contact Skill Imitation Learning for Robot-Independent Assembly Programming (1908.06272v2)

Published 17 Aug 2019 in cs.RO

Abstract: Robotic automation is a key driver for the advancement of technology. The skills of human workers, however, are difficult to program and seem currently unmatched by technical systems. In this work we present a data-driven approach to extract and learn robot-independent contact skills from human demonstrations in simulation environments, using a Long Short Term Memory (LSTM) network. Our model learns to generate error-correcting sequences of forces and torques in task space from object-relative motion, which industrial robots carry out through a Cartesian force control scheme on the real setup. This scheme uses forward dynamics computation of a virtually conditioned twin of the manipulator to solve the inverse kinematics problem. We evaluate our methods with an assembly experiment, in which our algorithm handles part tilting and jamming in order to succeed. The results show that the skill is robust towards localization uncertainty in task space and across different joint configurations of the robot. With our approach, non-experts can easily program force-sensitive assembly tasks in a robot-independent way.

Citations (27)

Summary

We haven't generated a summary for this paper yet.