Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Language Graph Distillation for Low-Resource Machine Translation (1908.06258v1)

Published 17 Aug 2019 in cs.CL

Abstract: Neural machine translation on low-resource language is challenging due to the lack of bilingual sentence pairs. Previous works usually solve the low-resource translation problem with knowledge transfer in a multilingual setting. In this paper, we propose the concept of Language Graph and further design a novel graph distillation algorithm that boosts the accuracy of low-resource translations in the graph with forward and backward knowledge distillation. Preliminary experiments on the TED talks multilingual dataset demonstrate the effectiveness of our proposed method. Specifically, we improve the low-resource translation pair by more than 3.13 points in terms of BLEU score.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.