Transductive Auxiliary Task Self-Training for Neural Multi-Task Models (1908.06136v2)
Abstract: Multi-task learning and self-training are two common ways to improve a machine learning model's performance in settings with limited training data. Drawing heavily on ideas from those two approaches, we suggest transductive auxiliary task self-training: training a multi-task model on (i) a combination of main and auxiliary task training data, and (ii) test instances with auxiliary task labels which a single-task version of the model has previously generated. We perform extensive experiments on 86 combinations of languages and tasks. Our results are that, on average, transductive auxiliary task self-training improves absolute accuracy by up to 9.56% over the pure multi-task model for dependency relation tagging and by up to 13.03% for semantic tagging.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.