Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ZeroER: Entity Resolution using Zero Labeled Examples (1908.06049v2)

Published 16 Aug 2019 in cs.DB and cs.LG

Abstract: Entity resolution (ER) refers to the problem of matching records in one or more relations that refer to the same real-world entity. While supervised ML approaches achieve the state-of-the-art results, they require a large amount of labeled examples that are expensive to obtain and often times infeasible. We investigate an important problem that vexes practitioners: is it possible to design an effective algorithm for ER that requires Zero labeled examples, yet can achieve performance comparable to supervised approaches? In this paper, we answer in the affirmative through our proposed approach dubbed ZeroER. Our approach is based on a simple observation -- the similarity vectors for matches should look different from that of unmatches. Operationalizing this insight requires a number of technical innovations. First, we propose a simple yet powerful generative model based on Gaussian Mixture Models for learning the match and unmatch distributions. Second, we propose an adaptive regularization technique customized for ER that ameliorates the issue of feature overfitting. Finally, we incorporate the transitivity property into the generative model in a novel way resulting in improved accuracy. On five benchmark ER datasets, we show that ZeroER greatly outperforms existing unsupervised approaches and achieves comparable performance to supervised approaches.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.