Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Entity-aware ELMo: Learning Contextual Entity Representation for Entity Disambiguation (1908.05762v2)

Published 14 Aug 2019 in cs.CL, cs.IR, cs.LG, and stat.ML

Abstract: We present a new local entity disambiguation system. The key to our system is a novel approach for learning entity representations. In our approach we learn an entity aware extension of Embedding for LLM (ELMo) which we call Entity-ELMo (E-ELMo). Given a paragraph containing one or more named entity mentions, each mention is first defined as a function of the entire paragraph (including other mentions), then they predict the referent entities. Utilizing E-ELMo for local entity disambiguation, we outperform all of the state-of-the-art local and global models on the popular benchmarks by improving about 0.5\% on micro average accuracy for AIDA test-b with Yago candidate set. The evaluation setup of the training data and candidate set are the same as our baselines for fair comparison.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.