Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Transformer-based Automatic Post-Editing with a Context-Aware Encoding Approach for Multi-Source Inputs (1908.05679v1)

Published 15 Aug 2019 in cs.CL and cs.LG

Abstract: Recent approaches to the Automatic Post-Editing (APE) research have shown that better results are obtained by multi-source models, which jointly encode both source (src) and machine translation output (mt) to produce post-edited sentence (pe). Along this trend, we present a new multi-source APE model based on the Transformer. To construct effective joint representations, our model internally learns to incorporate src context into mt representation. With this approach, we achieve a significant improvement over baseline systems, as well as the state-of-the-art multi-source APE model. Moreover, to demonstrate the capability of our model to incorporate src context, we show that the word alignment of the unknown MT system is successfully captured in our encoding results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.