Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

IoU-balanced Loss Functions for Single-stage Object Detection (1908.05641v2)

Published 15 Aug 2019 in cs.CV

Abstract: Single-stage object detectors have been widely applied in computer vision applications due to their high efficiency. However, we find that the loss functions adopted by single-stage object detectors hurt the localization accuracy seriously. Firstly, the standard cross-entropy loss for classification is independent of the localization task and drives all the positive examples to learn as high classification scores as possible regardless of localization accuracy during training. As a result, there will be many detections that have high classification scores but low IoU or detections that have low classification scores but high IoU. Secondly, for the standard smooth L1 loss, the gradient is dominated by the outliers that have poor localization accuracy during training. The above two problems will decrease the localization accuracy of single-stage detectors. In this work, IoU-balanced loss functions that consist of IoU-balanced classification loss and IoU-balanced localization loss are proposed to solve the above problems. The IoU-balanced classification loss pays more attention to positive examples with high IoU and can enhance the correlation between classification and localization tasks. The IoU-balanced localization loss decreases the gradient of examples with low IoU and increases the gradient of examples with high IoU, which can improve the localization accuracy of models. Extensive experiments on challenging public datasets such as MS COCO, PASCAL VOC and Cityscapes demonstrate that both IoU-balanced losses can bring substantial improvement for the popular single-stage detectors, especially for the localization accuracy. On COCO test-dev, the proposed methods can substantially improve AP by $1.0\%\sim1.7\%$ and AP75 by $1.0\%\sim2.4\%$. On PASCAL VOC, it can also substantially improve AP by $1.3\%\sim1.5\%$ and AP80, AP90 by $1.6\%\sim3.9\%$.

Citations (94)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.