Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 68 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 187 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved Mix-up with KL-Entropy for Learning From Noisy Labels (1908.05488v2)

Published 15 Aug 2019 in cs.CV

Abstract: Despite the deep neural networks (DNN) has achieved excellent performance in image classification researches, the training of DNNs needs a large of clean data with accurate annotations. The collect of a dataset is easy, but it is difficult to annotate the collecting data. On the websites, there exist a lot of image data which contains inaccurate annotations, but training on these datasets may make networks easier to over-fit the noisy labels and cause performance degradation. In this work, we propose an improved joint optimization framework, which mixed the mix-up entropy and Kullback-Leibler (KL) entropy as the loss function. The new loss function can give the better fine-tuning after the framework updates both the label annotations. We conduct experiments on CIFAR-10 dataset and Clothing1M dataset. The result shows the advantageous performance of our approach compared with other state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.