Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Mix-up with KL-Entropy for Learning From Noisy Labels (1908.05488v2)

Published 15 Aug 2019 in cs.CV

Abstract: Despite the deep neural networks (DNN) has achieved excellent performance in image classification researches, the training of DNNs needs a large of clean data with accurate annotations. The collect of a dataset is easy, but it is difficult to annotate the collecting data. On the websites, there exist a lot of image data which contains inaccurate annotations, but training on these datasets may make networks easier to over-fit the noisy labels and cause performance degradation. In this work, we propose an improved joint optimization framework, which mixed the mix-up entropy and Kullback-Leibler (KL) entropy as the loss function. The new loss function can give the better fine-tuning after the framework updates both the label annotations. We conduct experiments on CIFAR-10 dataset and Clothing1M dataset. The result shows the advantageous performance of our approach compared with other state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.