Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Playing a Strategy Game with Knowledge-Based Reinforcement Learning (1908.05472v1)

Published 15 Aug 2019 in cs.AI

Abstract: This paper presents Knowledge-Based Reinforcement Learning (KB-RL) as a method that combines a knowledge-based approach and a reinforcement learning (RL) technique into one method for intelligent problem solving. The proposed approach focuses on multi-expert knowledge acquisition, with the reinforcement learning being applied as a conflict resolution strategy aimed at integrating the knowledge of multiple exerts into one knowledge base. The article describes the KB-RL approach in detail and applies the reported method to one of the most challenging problems of current AI research, namely playing a strategy game. The results show that the KB-RL system is able to play and complete the full FreeCiv game, and to win against the computer players in various game settings. Moreover, with more games played, the system improves the gameplay by shortening the number of rounds that it takes to win the game. Overall, the reported experiment supports the idea that, based on human knowledge and empowered by reinforcement learning, the KB-RL system can deliver a strong solution to the complex, multi-strategic problems, and, mainly, to improve the solution with increased experience.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.