Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

What's Wrong with Hebrew NLP? And How to Make it Right (1908.05453v1)

Published 15 Aug 2019 in cs.CL

Abstract: For languages with simple morphology, such as English, automatic annotation pipelines such as spaCy or Stanford's CoreNLP successfully serve projects in academia and the industry. For many morphologically-rich languages (MRLs), similar pipelines show sub-optimal performance that limits their applicability for text analysis in research and the industry.The sub-optimal performance is mainly due to errors in early morphological disambiguation decisions, which cannot be recovered later in the pipeline, yielding incoherent annotations on the whole. In this paper we describe the design and use of the Onlp suite, a joint morpho-syntactic parsing framework for processing Modern Hebrew texts. The joint inference over morphology and syntax substantially limits error propagation, and leads to high accuracy. Onlp provides rich and expressive output which already serves diverse academic and commercial needs. Its accompanying online demo further serves educational activities, introducing Hebrew NLP intricacies to researchers and non-researchers alike.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube