Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sex Trafficking Detection with Ordinal Regression Neural Networks (1908.05434v2)

Published 15 Aug 2019 in cs.LG, cs.CL, and stat.ML

Abstract: Sex trafficking is a global epidemic. Escort websites are a primary vehicle for selling the services of such trafficking victims and thus a major driver of trafficker revenue. Many law enforcement agencies do not have the resources to manually identify leads from the millions of escort ads posted across dozens of public websites. We propose an ordinal regression neural network to identify escort ads that are likely linked to sex trafficking. Our model uses a modified cost function to mitigate inconsistencies in predictions often associated with nonparametric ordinal regression and leverages recent advancements in deep learning to improve prediction accuracy. The proposed method significantly improves on the previous state-of-the-art on Trafficking-10K, an expert-annotated dataset of escort ads. Additionally, because traffickers use acronyms, deliberate typographical errors, and emojis to replace explicit keywords, we demonstrate how to expand the lexicon of trafficking flags through word embeddings and t-SNE.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.