Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards End-to-End Learning for Efficient Dialogue Agent by Modeling Looking-ahead Ability (1908.05408v1)

Published 15 Aug 2019 in cs.CL

Abstract: Learning an efficient manager of dialogue agent from data with little manual intervention is important, especially for goal-oriented dialogues. However, existing methods either take too many manual efforts (e.g. reinforcement learning methods) or cannot guarantee the dialogue efficiency (e.g. sequence-to-sequence methods). In this paper, we address this problem by proposing a novel end-to-end learning model to train a dialogue agent that can look ahead for several future turns and generate an optimal response to make the dialogue efficient. Our method is data-driven and does not require too much manual work for intervention during system design. We evaluate our method on two datasets of different scenarios and the experimental results demonstrate the efficiency of our model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.