Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SFSegNet: Parse Freehand Sketches using Deep Fully Convolutional Networks (1908.05389v1)

Published 15 Aug 2019 in cs.CV and cs.LG

Abstract: Parsing sketches via semantic segmentation is attractive but challenging, because (i) free-hand drawings are abstract with large variances in depicting objects due to different drawing styles and skills; (ii) distorting lines drawn on the touchpad make sketches more difficult to be recognized; (iii) the high-performance image segmentation via deep learning technologies needs enormous annotated sketch datasets during the training stage. In this paper, we propose a Sketch-target deep FCN Segmentation Network(SFSegNet) for automatic free-hand sketch segmentation, labeling each sketch in a single object with multiple parts. SFSegNet has an end-to-end network process between the input sketches and the segmentation results, composed of 2 parts: (i) a modified deep Fully Convolutional Network(FCN) using a reweighting strategy to ignore background pixels and classify which part each pixel belongs to; (ii) affine transform encoders that attempt to canonicalize the shaking strokes. We train our network with the dataset that consists of 10,000 annotated sketches, to find an extensively applicable model to segment stokes semantically in one ground truth. Extensive experiments are carried out and segmentation results show that our method outperforms other state-of-the-art networks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.