Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DAPAS : Denoising Autoencoder to Prevent Adversarial attack in Semantic Segmentation (1908.05195v4)

Published 14 Aug 2019 in cs.CV

Abstract: Nowadays, Deep learning techniques show dramatic performance on computer vision area, and they even outperform human. But it is also vulnerable to some small perturbation called an adversarial attack. This is a problem combined with the safety of artificial intelligence, which has recently been studied a lot. These attacks have shown that they can fool models of image classification, semantic segmentation, and object detection. We point out this attack can be protected by denoise autoencoder, which is used for denoising the perturbation and restoring the original images. We experiment with various noise distributions and verify the effect of denoise autoencoder against adversarial attack in semantic segmentation.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.