Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

New Results on Parameter Estimation via Dynamic Regressor Extension and Mixing: Continuous and Discrete-time Cases (1908.05125v1)

Published 14 Aug 2019 in eess.SY, cs.PF, and cs.SY

Abstract: We present some new results on the dynamic regressor extension and mixing parameter estimators for linear regression models recently proposed in the literature. This technique has proven instrumental in the solution of several open problems in system identification and adaptive control. The new results include: (i) a unified treatment of the continuous and the discrete-time cases; (ii) the proposal of two new extended regressor matrices, one which guarantees a quantifiable transient performance improvement, and the other exponential convergence under conditions that are strictly weaker than regressor persistence of excitation; and (iii) an alternative estimator ensuring parameter estimation in finite-time that retains its alertness to track time-varying parameters. Simulations that illustrate our results are also presented.

Citations (112)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.