Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Person Re-identification in Aerial Imagery (1908.05024v3)

Published 14 Aug 2019 in cs.CV

Abstract: Nowadays, with the rapid development of consumer Unmanned Aerial Vehicles (UAVs), visual surveillance by utilizing the UAV platform has been very attractive. Most of the research works for UAV captured visual data are mainly focused on the tasks of object detection and tracking. However, limited attention has been paid to the task of person Re-identification (ReID) which has been widely studied in ordinary surveillance cameras with fixed emplacements. In this paper, to facilitate the research of person ReID in aerial imagery, we collect a large scale airborne person ReID dataset named as Person ReID for Aerial Imagery (PRAI-1581), which consists of 39,461 images of 1581 person identities. The images of the dataset are shot by two DJI consumer UAVs flying at an altitude ranging from 20 to 60 meters above the ground, which covers most of the real UAV surveillance scenarios. In addition, we propose to utilize subspace pooling of convolution feature maps to represent the input person images. Our method can learn a discriminative and compact feature representation for ReID in aerial imagery and can be trained in an end-to-end fashion efficiently. We conduct extensive experiments on the proposed dataset and the experimental results demonstrate that re-identify persons in aerial imagery is a challenging problem, where our method performs favorably against state of the arts. Our dataset can be accessed via \url{https://github.com/stormyoung/PRAI-1581}.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com