Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Establishing Strong Baselines for the New Decade: Sequence Tagging, Syntactic and Semantic Parsing with BERT (1908.04943v4)

Published 14 Aug 2019 in cs.CL

Abstract: This paper presents new state-of-the-art models for three tasks, part-of-speech tagging, syntactic parsing, and semantic parsing, using the cutting-edge contextualized embedding framework known as BERT. For each task, we first replicate and simplify the current state-of-the-art approach to enhance its model efficiency. We then evaluate our simplified approaches on those three tasks using token embeddings generated by BERT. 12 datasets in both English and Chinese are used for our experiments. The BERT models outperform the previously best-performing models by 2.5% on average (7.5% for the most significant case). Moreover, an in-depth analysis on the impact of BERT embeddings is provided using self-attention, which helps understanding in this rich yet representation. All models and source codes are available in public so that researchers can improve upon and utilize them to establish strong baselines for the next decade.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.