Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learn How to Cook a New Recipe in a New House: Using Map Familiarization, Curriculum Learning, and Bandit Feedback to Learn Families of Text-Based Adventure Games (1908.04777v3)

Published 13 Aug 2019 in cs.CL and cs.AI

Abstract: We consider the task of learning to play families of text-based computer adventure games, i.e., fully textual environments with a common theme (e.g. cooking) and goal (e.g. prepare a meal from a recipe) but with different specifics; new instances of such games are relatively straightforward for humans to master after a brief exposure to the genre but have been curiously difficult for computer agents to learn. We find that the deep Q-learning strategies that have been successfully leveraged for superhuman performance in single-instance action video games can be applied to learn families of text video games when adopting simple strategies that correlate with human-like learning behavior. Specifically, we build agents that learn to tackle simple scenarios before more complex ones using curriculum learning, that familiarize themselves in an unfamiliar environment by navigating before acting, and that explore uncertain environments more thoroughly using contextual multi-armed bandit decision policies. We demonstrate improved task completion rates over reasonable baselines when evaluating on never-before-seen games of that theme.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.