Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI (1908.04701v1)

Published 13 Aug 2019 in eess.IV

Abstract: Brain Metastases (BM) complicate 20-40% of cancer cases. BM lesions can present as punctate (1 mm) foci, requiring high-precision Magnetic Resonance Imaging (MRI) in order to prevent inadequate or delayed BM treatment. However, BM lesion detection remains challenging partly due to their structural similarities to normal structures (e.g., vasculature). We propose a BM-detection framework using a single-sequence gadolinium-enhanced T1-weighted 3D MRI dataset. The framework focuses on detection of smaller (< 15 mm) BM lesions and consists of: (1) candidate-selection stage, using Laplacian of Gaussian approach for highlighting parts of a MRI volume holding higher BM occurrence probabilities, and (2) detection stage that iteratively processes cropped region-of-interest volumes centered by candidates using a custom-built 3D convolutional neural network ("CropNet"). Data is augmented extensively during training via a pipeline consisting of random gamma correction and elastic deformation stages; the framework thereby maintains its invariance for a plausible range of BM shape and intensity representations. This approach is tested using five-fold cross-validation on 217 datasets from 158 patients, with training and testing groups randomized per patient to eliminate learning bias. The BM database included lesions with a mean diameter of ~5.4 mm and a mean volume of ~160 mm3. For 90% BM-detection sensitivity, the framework produced on average 9.12 false-positive BM detections per patient (standard deviation of 3.49); for 85% sensitivity, the average number of false-positives declined to 5.85. Comparative analysis showed that the framework produces comparable BM-detection accuracy with the state-of-art approaches validated for significantly larger lesions.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.