Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Space-Efficient Construction of Compressed Suffix Trees (1908.04686v1)

Published 12 Aug 2019 in cs.DS

Abstract: We show how to build several data structures of central importance to string processing, taking as input the Burrows-Wheeler transform (BWT) and using small extra working space. Let $n$ be the text length and $\sigma$ be the alphabet size. We first provide two algorithms that enumerate all LCP values and suffix tree intervals in $O(n\log\sigma)$ time using just $o(n\log\sigma)$ bits of working space on top of the input BWT. Using these algorithms as building blocks, for any parameter $0 < \epsilon \leq 1$ we show how to build the PLCP bitvector and the balanced parentheses representation of the suffix tree topology in $O\left(n(\log\sigma + \epsilon{-1}\cdot \log\log n)\right)$ time using at most $n\log\sigma \cdot(\epsilon + o(1))$ bits of working space on top of the input BWT and the output. In particular, this implies that we can build a compressed suffix tree from the BWT using just succinct working space (i.e. $o(n\log\sigma)$ bits) and any time in $\Theta(n\log\sigma) + \omega(n\log\log n)$. This improves the previous most space-efficient algorithms, which worked in $O(n)$ bits and $O(n\log n)$ time. We also consider the problem of merging BWTs of string collections, and provide a solution running in $O(n\log\sigma)$ time and using just $o(n\log\sigma)$ bits of working space. An efficient implementation of our LCP construction and BWT merge algorithms use (in RAM) as few as $n$ bits on top of a packed representation of the input/output and process data as fast as $2.92$ megabases per second.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.