Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Space-Efficient Construction of Compressed Suffix Trees (1908.04686v1)

Published 12 Aug 2019 in cs.DS

Abstract: We show how to build several data structures of central importance to string processing, taking as input the Burrows-Wheeler transform (BWT) and using small extra working space. Let $n$ be the text length and $\sigma$ be the alphabet size. We first provide two algorithms that enumerate all LCP values and suffix tree intervals in $O(n\log\sigma)$ time using just $o(n\log\sigma)$ bits of working space on top of the input BWT. Using these algorithms as building blocks, for any parameter $0 < \epsilon \leq 1$ we show how to build the PLCP bitvector and the balanced parentheses representation of the suffix tree topology in $O\left(n(\log\sigma + \epsilon{-1}\cdot \log\log n)\right)$ time using at most $n\log\sigma \cdot(\epsilon + o(1))$ bits of working space on top of the input BWT and the output. In particular, this implies that we can build a compressed suffix tree from the BWT using just succinct working space (i.e. $o(n\log\sigma)$ bits) and any time in $\Theta(n\log\sigma) + \omega(n\log\log n)$. This improves the previous most space-efficient algorithms, which worked in $O(n)$ bits and $O(n\log n)$ time. We also consider the problem of merging BWTs of string collections, and provide a solution running in $O(n\log\sigma)$ time and using just $o(n\log\sigma)$ bits of working space. An efficient implementation of our LCP construction and BWT merge algorithms use (in RAM) as few as $n$ bits on top of a packed representation of the input/output and process data as fast as $2.92$ megabases per second.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.