Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Three Branches: Detecting Actions With Richer Features (1908.04519v1)

Published 13 Aug 2019 in cs.CV

Abstract: We present our three branch solutions for International Challenge on Activity Recognition at CVPR2019. This model seeks to fuse richer information of global video clip, short human attention and long-term human activity into a unified model. We have participated in two tasks: Task A, the Kinetics challenge and Task B, spatio-temporal action localization challenge. For Kinetics, we achieve 21.59% error rate. For the AVA challenge, our final model obtains 32.49% mAP on the test sets, which outperforms all submissions to the AVA challenge at CVPR 2018 for more than 10% mAP. As the future work, we will introduce human activity knowledge, which is a new dataset including key information of human activity.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube