Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reinforcement Learning based Interconnection Routing for Adaptive Traffic Optimization (1908.04484v1)

Published 13 Aug 2019 in cs.NI, cs.AI, cs.AR, cs.LG, cs.SY, and eess.SY

Abstract: Applying Machine Learning (ML) techniques to design and optimize computer architectures is a promising research direction. Optimizing the runtime performance of a Network-on-Chip (NoC) necessitates a continuous learning framework. In this work, we demonstrate the promise of applying reinforcement learning (RL) to optimize NoC runtime performance. We present three RL-based methods for learning optimal routing algorithms. The experimental results show the algorithms can successfully learn a near-optimal solution across different environment states. Reproducible Code: github.com/huckiyang/interconnect-routing-gym

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.