Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning based Interconnection Routing for Adaptive Traffic Optimization (1908.04484v1)

Published 13 Aug 2019 in cs.NI, cs.AI, cs.AR, cs.LG, cs.SY, and eess.SY

Abstract: Applying Machine Learning (ML) techniques to design and optimize computer architectures is a promising research direction. Optimizing the runtime performance of a Network-on-Chip (NoC) necessitates a continuous learning framework. In this work, we demonstrate the promise of applying reinforcement learning (RL) to optimize NoC runtime performance. We present three RL-based methods for learning optimal routing algorithms. The experimental results show the algorithms can successfully learn a near-optimal solution across different environment states. Reproducible Code: github.com/huckiyang/interconnect-routing-gym

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.