Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What's in the box? Explaining the black-box model through an evaluation of its interpretable features (1908.04348v1)

Published 31 Jul 2019 in cs.CV, cs.AI, and cs.LG

Abstract: Algorithms are powerful and necessary tools behind a large part of the information we use every day. However, they may introduce new sources of bias, discrimination and other unfair practices that affect people who are unaware of it. Greater algorithm transparency is indispensable to provide more credible and reliable services. Moreover, requiring developers to design transparent algorithm-driven applications allows them to keep the model accessible and human understandable, increasing the trust of end users. In this paper we present EBAnO, a new engine able to produce prediction-local explanations for a black-box model exploiting interpretable feature perturbations. EBAnO exploits the hypercolumns representation together with the cluster analysis to identify a set of interpretable features of images. Furthermore two indices have been proposed to measure the influence of input features on the final prediction made by a CNN model. EBAnO has been preliminarily tested on a set of heterogeneous images. The results highlight the effectiveness of EBAnO in explaining the CNN classification through the evaluation of interpretable features influence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Francesco Ventura (3 papers)
  2. Tania Cerquitelli (17 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.