Explicit Shape Encoding for Real-Time Instance Segmentation (1908.04067v1)
Abstract: In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named \textbf{ESE-Seg}. It largely reduces the computational consumption of the instance segmentation by explicitly decoding the multiple object shapes with tensor operations, thus performs the instance segmentation at almost the same speed as the object detection. ESE-Seg is based on a novel shape signature Inner-center Radius (IR), Chebyshev polynomial fitting and the strong modern object detectors. ESE-Seg with YOLOv3 outperforms the Mask R-CNN on Pascal VOC 2012 at mAP$[email protected] while 7 times faster.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.