Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Explicit Shape Encoding for Real-Time Instance Segmentation (1908.04067v1)

Published 12 Aug 2019 in cs.CV

Abstract: In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named \textbf{ESE-Seg}. It largely reduces the computational consumption of the instance segmentation by explicitly decoding the multiple object shapes with tensor operations, thus performs the instance segmentation at almost the same speed as the object detection. ESE-Seg is based on a novel shape signature Inner-center Radius (IR), Chebyshev polynomial fitting and the strong modern object detectors. ESE-Seg with YOLOv3 outperforms the Mask R-CNN on Pascal VOC 2012 at mAP$[email protected] while 7 times faster.

Citations (98)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.