Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Structurally-Strengthened Generative Adversarial Network for MRI Reconstruction (1908.03858v1)

Published 11 Aug 2019 in eess.IV and cs.CV

Abstract: Compressed sensing based magnetic resonance imaging (CS-MRI) provides an efficient way to reduce scanning time of MRI. Recently deep learning has been introduced into CS-MRI to further improve the image quality and shorten reconstruction time. In this paper, we propose an efficient structurally strengthened Generative Adversarial Network, termed ESSGAN, for reconstructing MR images from highly under-sampled k-space data. ESSGAN consists of a structurally strengthened generator (SG) and a discriminator. In SG, we introduce strengthened connections (SCs) to improve the utilization of the feature maps between the proposed strengthened convolutional autoencoders (SCAEs), where each SCAE is a variant of a typical convolutional autoencoder. In addition, we creatively introduce a residual in residual block (RIRB) to SG. RIRB increases the depth of SG, thus enhances feature expression ability of SG. Moreover, it can give the encoder blocks and the decoder blocks richer texture features. To further reduce artifacts and preserve more image details, we introduce an enhanced structural loss to SG. ESSGAN can provide higher image quality with less model parameters than the state-of-the-art deep learning-based methods at different undersampling rates of different subsampling masks, and reconstruct a 256*256 MR image in tens of milliseconds.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube