Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SpecAE: Spectral AutoEncoder for Anomaly Detection in Attributed Networks (1908.03849v3)

Published 11 Aug 2019 in cs.LG and stat.ML

Abstract: Anomaly detection aims to distinguish observations that are rare and different from the majority. While most existing algorithms assume that instances are i.i.d., in many practical scenarios, links describing instance-to-instance dependencies and interactions are available. Such systems are called attributed networks. Anomaly detection in attributed networks has various applications such as monitoring suspicious accounts in social media and financial fraud in transaction networks. However, it remains a challenging task since the definition of anomaly becomes more complicated and topological structures are heterogeneous with nodal attributes. In this paper, we propose a spectral convolution and deconvolution based framework -- SpecAE, to project the attributed network into a tailored space to detect global and community anomalies. SpecAE leverages Laplacian sharpening to amplify the distances between representations of anomalies and the ones of the majority. The learned representations along with reconstruction errors are combined with a density estimation model to perform the detection. They are trained jointly as an end-to-end framework. Experiments on real-world datasets demonstrate the effectiveness of SpecAE.

Citations (95)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.