Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Structured Cross-Modal Anomaly Detection (1908.03848v1)

Published 11 Aug 2019 in cs.LG and stat.ML

Abstract: Anomaly detection is a fundamental problem in data mining field with many real-world applications. A vast majority of existing anomaly detection methods predominately focused on data collected from a single source. In real-world applications, instances often have multiple types of features, such as images (ID photos, finger prints) and texts (bank transaction histories, user online social media posts), resulting in the so-called multi-modal data. In this paper, we focus on identifying anomalies whose patterns are disparate across different modalities, i.e., cross-modal anomalies. Some of the data instances within a multi-modal context are often not anomalous when they are viewed separately in each individual modality, but contains inconsistent patterns when multiple sources are jointly considered. The existence of multi-modal data in many real-world scenarios brings both opportunities and challenges to the canonical task of anomaly detection. On the one hand, in multi-modal data, information of different modalities may complement each other in improving the detection performance. On the other hand, complicated distributions across different modalities call for a principled framework to characterize their inherent and complex correlations, which is often difficult to capture with conventional linear models. To this end, we propose a novel deep structured anomaly detection framework to identify the cross-modal anomalies embedded in the data. Experiments on real-world datasets demonstrate the effectiveness of the proposed framework comparing with the state-of-the-art.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube