Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LoRMIkA: Local rule-based model interpretability with k-optimal associations (1908.03840v2)

Published 11 Aug 2019 in cs.LG, cs.AI, and stat.ML

Abstract: As we rely more and more on machine learning models for real-life decision-making, being able to understand and trust the predictions becomes ever more important. Local explainer models have recently been introduced to explain the predictions of complex machine learning models at the instance level. In this paper, we propose Local Rule-based Model Interpretability with k-optimal Associations (LoRMIkA), a novel model-agnostic approach that obtains k-optimal association rules from a neighbourhood of the instance to be explained. Compared with other rule-based approaches in the literature, we argue that the most predictive rules are not necessarily the rules that provide the best explanations. Consequently, the LoRMIkA framework provides a flexible way to obtain predictive and interesting rules. It uses an efficient search algorithm guaranteed to find the k-optimal rules with respect to objectives such as confidence, lift, leverage, coverage, and support. It also provides multiple rules which explain the decision and counterfactual rules, which give indications for potential changes to obtain different outputs for given instances. We compare our approach to other state-of-the-art approaches in local model interpretability on three different datasets and achieve competitive results in terms of local accuracy and interpretability.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube