Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LoRMIkA: Local rule-based model interpretability with k-optimal associations (1908.03840v2)

Published 11 Aug 2019 in cs.LG, cs.AI, and stat.ML

Abstract: As we rely more and more on machine learning models for real-life decision-making, being able to understand and trust the predictions becomes ever more important. Local explainer models have recently been introduced to explain the predictions of complex machine learning models at the instance level. In this paper, we propose Local Rule-based Model Interpretability with k-optimal Associations (LoRMIkA), a novel model-agnostic approach that obtains k-optimal association rules from a neighbourhood of the instance to be explained. Compared with other rule-based approaches in the literature, we argue that the most predictive rules are not necessarily the rules that provide the best explanations. Consequently, the LoRMIkA framework provides a flexible way to obtain predictive and interesting rules. It uses an efficient search algorithm guaranteed to find the k-optimal rules with respect to objectives such as confidence, lift, leverage, coverage, and support. It also provides multiple rules which explain the decision and counterfactual rules, which give indications for potential changes to obtain different outputs for given instances. We compare our approach to other state-of-the-art approaches in local model interpretability on three different datasets and achieve competitive results in terms of local accuracy and interpretability.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.