Semi-Supervised Multi-Task Learning With Chest X-Ray Images (1908.03693v2)
Abstract: Discriminative models that require full supervision are inefficacious in the medical imaging domain when large labeled datasets are unavailable. By contrast, generative modeling---i.e., learning data generation and classification---facilitates semi-supervised training with limited labeled data. Moreover, generative modeling can be advantageous in accomplishing multiple objectives for better generalization. We propose a novel multi-task learning model for jointly learning a classifier and a segmentor, from chest X-ray images, through semi-supervised learning. In addition, we propose a new loss function that combines absolute KL divergence with Tversky loss (KLTV) to yield faster convergence and better segmentation performance. Based on our experimental results using a novel segmentation model, an Adversarial Pyramid Progressive Attention U-Net (APPAU-Net), we hypothesize that KLTV can be more effective for generalizing multi-tasking models while being competitive in segmentation-only tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.