Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Catching the Phish: Detecting Phishing Attacks using Recurrent Neural Networks (RNNs) (1908.03640v1)

Published 9 Aug 2019 in cs.CR, cs.CL, cs.CY, and cs.LG

Abstract: The emergence of online services in our daily lives has been accompanied by a range of malicious attempts to trick individuals into performing undesired actions, often to the benefit of the adversary. The most popular medium of these attempts is phishing attacks, particularly through emails and websites. In order to defend against such attacks, there is an urgent need for automated mechanisms to identify this malevolent content before it reaches users. Machine learning techniques have gradually become the standard for such classification problems. However, identifying common measurable features of phishing content (e.g., in emails) is notoriously difficult. To address this problem, we engage in a novel study into a phishing content classifier based on a recurrent neural network (RNN), which identifies such features without human input. At this stage, we scope our research to emails, but our approach can be extended to apply to websites. Our results show that the proposed system outperforms state-of-the-art tools. Furthermore, our classifier is efficient and takes into account only the text and, in particular, the textual structure of the email. Since these features are rarely considered in email classification, we argue that our classifier can complement existing classifiers with high information gain.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.