Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Memory-Based Multi-Processing Method For Big Data Computation (1908.03617v1)

Published 24 May 2019 in cs.DC

Abstract: The evolution of the Internet and computer applications have generated colossal amount of data. They are referred to as Big Data and they consist of huge volume, high velocity, and variable datasets that need to be managed at the right speed and within the right time frame to allow real-time data processing and analysis. Several Big Data solutions were developed, however they are all based on distributed computing which can be sometimes expensive to build, manage, troubleshoot, and secure. This paper proposes a novel method for processing Big Data using memory-based, multi-processing, and one-server architecture. It is memory-based because data are loaded into memory prior to start processing. It is multi-processing because it leverages the power of parallel programming using shared memory and multiple threads running over several CPUs in a concurrent fashion. It is one-server because it only requires a single server that operates in a non-distributed computing environment. The foremost advantages of the proposed method are high performance, low cost, and ease of management. The experiments conducted showed outstanding results as the proposed method outperformed other conventional methods that currently exist on the market. Further research can improve upon the proposed method so that it supports message passing between its different processes using remote procedure calls among other techniques.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube