Parameterized Algorithms for Maximum Cut with Connectivity Constraints (1908.03389v1)
Abstract: We study two variants of \textsc{Maximum Cut}, which we call \textsc{Connected Maximum Cut} and \textsc{Maximum Minimal Cut}, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-complete even on planar graphs whereas \textsc{Maximum Cut} on planar graphs is solvable in polynomial time. We first show that these problems are NP-complete even on planar bipartite graphs and split graphs. Then we give parameterized algorithms using graph parameters such as clique-width, tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution size.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.