Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Efficient Inference of CNNs via Channel Pruning (1908.03266v1)

Published 8 Aug 2019 in cs.CV

Abstract: The deployment of Convolutional Neural Networks (CNNs) on resource constrained platforms such as mobile devices and embedded systems has been greatly hindered by their high implementation cost, and thus motivated a lot research interest in compressing and accelerating trained CNN models. Among various techniques proposed in literature, structured pruning, especially channel pruning, has gain a lot focus due to 1) its superior performance in memory, computation, and energy reduction; and 2) it is friendly to existing hardware and software libraries. In this paper, we investigate the intermediate results of convolutional layers and present a novel pivoted QR factorization based channel pruning technique that can prune any specified number of input channels of any layer. We also explore more pruning opportunities in ResNet-like architectures by applying two tweaks to our technique. Experiment results on VGG-16 and ResNet-50 models with ImageNet ILSVRC 2012 dataset are very impressive with 4.29X and 2.84X computation reduction while only sacrificing about 1.40\% top-5 accuracy. Compared to many prior works, the pruned models produced by our technique require up to 47.7\% less computation while still achieve higher accuracies.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube