Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Faster Tensor Train Decomposition for Sparse Data (1908.02721v2)

Published 7 Aug 2019 in math.NA and cs.NA

Abstract: In recent years, the application of tensors has become more widespread in fields that involve data analytics and numerical computation. Due to the explosive growth of data, low-rank tensor decompositions have become a powerful tool to harness the notorious curse of dimensionality. The main forms of tensor decomposition include CP decomposition, Tucker decomposition, tensor train (TT) decomposition, etc. Each of the existing TT decomposition algorithms, including the TT-SVD and randomized TT-SVD, is successful in the field, but neither can both accurately and efficiently decompose large-scale sparse tensors. Based on previous research, this paper proposes a new quasi-best fast TT decomposition algorithm for large-scale sparse tensors with proven correctness and the upper bound of its complexity is derived. In numerical experiments, we verify that the proposed algorithm can decompose sparse tensors faster than the TT-SVD, and have more speed, precision and versatility than randomized TT-SVD, and it can be used to decomposes arbitrary high-dimensional tensor without losing efficiency when the number of non-zero elements is limited. The new algorithm implements a large-scale sparse matrix TT decomposition that was previously unachievable, enabling tensor decomposition based algorithms to be applied in larger-scale scenarios.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube