Papers
Topics
Authors
Recent
2000 character limit reached

Attention-Aware Linear Depthwise Convolution for Single Image Super-Resolution (1908.02648v3)

Published 7 Aug 2019 in eess.IV and cs.CV

Abstract: Although deep convolutional neural networks (CNNs) have obtained outstanding performance in image superresolution (SR), their computational cost increases geometrically as CNN models get deeper and wider. Meanwhile, the features of intermediate layers are treated equally across the channel, thus hindering the representational capability of CNNs. In this paper, we propose an attention-aware linear depthwise network to address the problems for single image SR, named ALDNet. Specifically, linear depthwise convolution allows CNN-based SR models to preserve useful information for reconstructing a super-resolved image while reducing computational burden. Furthermore, we design an attention-aware branch that enhances the representation ability of depthwise convolution layers by making full use of depthwise filter interdependency. Experiments on publicly available benchmark datasets show that ALDNet achieves superior performance to traditional depthwise separable convolutions in terms of quantitative measurements and visual quality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.