Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Paired-Consistency: An Example-Based Model-Agnostic Approach to Fairness Regularization in Machine Learning (1908.02641v2)

Published 7 Aug 2019 in cs.LG and stat.ML

Abstract: As AI systems develop in complexity it is becoming increasingly hard to ensure non-discrimination on the basis of protected attributes such as gender, age, and race. Many recent methods have been developed for dealing with this issue as long as the protected attribute is explicitly available for the algorithm. We address the setting where this is not the case (with either no explicit protected attribute, or a large set of them). Instead, we assume the existence of a fair domain expert capable of generating an extension to the labeled dataset - a small set of example pairs, each having a different value on a subset of protected variables, but judged to warrant a similar model response. We define a performance metric - paired consistency. Paired consistency measures how close the output (assigned by a classifier or a regressor) is on these carefully selected pairs of examples for which fairness dictates identical decisions. In some cases consistency can be embedded within the loss function during optimization and serve as a fairness regularizer, and in others it is a tool for fair model selection. We demonstrate our method using the well studied Income Census dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube