Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mono-Stixels: Monocular depth reconstruction of dynamic street scenes (1908.02635v1)

Published 7 Aug 2019 in cs.CV

Abstract: In this paper we present mono-stixels, a compact environment representation specially designed for dynamic street scenes. Mono-stixels are a novel approach to estimate stixels from a monocular camera sequence instead of the traditionally used stereo depth measurements. Our approach jointly infers the depth, motion and semantic information of the dynamic scene as a 1D energy minimization problem based on optical flow estimates, pixel-wise semantic segmentation and camera motion. The optical flow of a stixel is described by a homography. By applying the mono-stixel model the degrees of freedom of a stixel-homography are reduced to only up to two degrees of freedom. Furthermore, we exploit a scene model and semantic information to handle moving objects. In our experiments we use the public available DeepFlow for optical flow estimation and FCN8s for the semantic information as inputs and show on the KITTI 2015 dataset that mono-stixels provide a compact and reliable depth reconstruction of both the static and moving parts of the scene. Thereby, mono-stixels overcome the limitation to static scenes of previous structure-from-motion approaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.