Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Quantum Calculus-based Volterra LMS for Nonlinear Channel Estimation (1908.02510v1)

Published 7 Aug 2019 in math.OC, cs.IT, eess.SP, and math.IT

Abstract: A novel adaptive filtering method called $q$-Volterra least mean square ($q$-VLMS) is presented in this paper. The $q$-VLMS is a nonlinear extension of conventional LMS and it is based on Jackson's derivative also known as $q$-calculus. In Volterra LMS, due to large variance of input signal the convergence speed is very low. With proper manipulation we successfully improved the convergence performance of the Volterra LMS. The proposed algorithm is analyzed for the step-size bounds and results of analysis are verified through computer simulations for nonlinear channel estimation problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.