Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TinySearch -- Semantics based Search Engine using Bert Embeddings (1908.02451v1)

Published 7 Aug 2019 in cs.IR and cs.CL

Abstract: Existing search engines use keyword matching or tf-idf based matching to map the query to the web-documents and rank them. They also consider other factors such as page rank, hubs-and-authority scores, knowledge graphs to make the results more meaningful. However, the existing search engines fail to capture the meaning of query when it becomes large and complex. BERT, introduced by Google in 2018, provides embeddings for words as well as sentences. In this paper, I have developed a semantics-oriented search engine using neural networks and BERT embeddings that can search for query and rank the documents in the order of the most meaningful to least meaningful. The results shows improvement over one existing search engine for complex queries for given set of documents.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.