Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment (1908.02388v3)

Published 6 Aug 2019 in cs.LG and stat.ML

Abstract: This paper provides an empirical evaluation of recently developed exploration algorithms within the Arcade Learning Environment (ALE). We study the use of different reward bonuses that incentives exploration in reinforcement learning. We do so by fixing the learning algorithm used and focusing only on the impact of the different exploration bonuses in the agent's performance. We use Rainbow, the state-of-the-art algorithm for value-based agents, and focus on some of the bonuses proposed in the last few years. We consider the impact these algorithms have on performance within the popular game Montezuma's Revenge which has gathered a lot of interest from the exploration community, across the the set of seven games identified by Bellemare et al. (2016) as challenging for exploration, and easier games where exploration is not an issue. We find that, in our setting, recently developed bonuses do not provide significantly improved performance on Montezuma's Revenge or hard exploration games. We also find that existing bonus-based methods may negatively impact performance on games in which exploration is not an issue and may even perform worse than $\epsilon$-greedy exploration.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube