Papers
Topics
Authors
Recent
2000 character limit reached

Clustering of Deep Contextualized Representations for Summarization of Biomedical Texts (1908.02286v2)

Published 6 Aug 2019 in cs.CL

Abstract: In recent years, summarizers that incorporate domain knowledge into the process of text summarization have outperformed generic methods, especially for summarization of biomedical texts. However, construction and maintenance of domain knowledge bases are resource-intense tasks requiring significant manual annotation. In this paper, we demonstrate that contextualized representations extracted from the pre-trained deep LLM BERT, can be effectively used to measure the similarity between sentences and to quantify the informative content. The results show that our BERT-based summarizer can improve the performance of biomedical summarization. Although the summarizer does not use any sources of domain knowledge, it can capture the context of sentences more accurately than the comparison methods. The source code and data are available at https://github.com/BioTextSumm/BERT-based-Summ.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.