Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parallelization of Kmeans++ using CUDA (1908.02136v1)

Published 30 Jul 2019 in cs.DC

Abstract: K-means++ is an algorithm which is invented to improve the process of finding initial seeds in K-means algorithm. In this algorithm, initial seeds are chosen consecutively by a probability which is proportional to the distance to the nearest center. The most crucial problem of this algorithm is that when running in serial mode, it decreases the speed of clustering. In this paper, we aim to parallelize the most time consuming steps of the k-means++ algorithm. Our purpose is to reduce the running time while maintaining the quality of the serial algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.