Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parallelization of Kmeans++ using CUDA (1908.02136v1)

Published 30 Jul 2019 in cs.DC

Abstract: K-means++ is an algorithm which is invented to improve the process of finding initial seeds in K-means algorithm. In this algorithm, initial seeds are chosen consecutively by a probability which is proportional to the distance to the nearest center. The most crucial problem of this algorithm is that when running in serial mode, it decreases the speed of clustering. In this paper, we aim to parallelize the most time consuming steps of the k-means++ algorithm. Our purpose is to reduce the running time while maintaining the quality of the serial algorithm.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.