Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Toward Efficient In-memory Data Analytics on NUMA Systems (1908.01860v3)

Published 5 Aug 2019 in cs.DB

Abstract: Data analytics systems commonly utilize in-memory query processing techniques to achieve better throughput and lower latency. Modern computers increasingly rely on Non-Uniform Memory Access (NUMA) architectures in order to achieve scalability. A key drawback of NUMA architectures is that many existing software solutions are not aware of the underlying NUMA topology and thus do not take full advantage of the hardware. Modern operating systems are designed to provide basic support for NUMA systems. However, default system configurations are typically sub-optimal for large data analytics applications. Additionally, achieving NUMA-awareness by rewriting the application from the ground up is not always feasible. In this work, we evaluate a variety of strategies that aim to accelerate memory-intensive data analytics workloads on NUMA systems. We analyze the impact of different memory allocators, memory placement strategies, thread placement, and kernel-level load balancing and memory management mechanisms. With extensive experimental evaluation we demonstrate that methodical application of these techniques can be used to obtain significant speedups in four commonplace in-memory data analytics workloads, on three different hardware architectures. Furthermore, we show that these strategies can speed up two popular database systems running a TPC-H workload.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.