Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Compact Target-Oriented Feature Representations for Visual Tracking (1908.01442v1)

Published 5 Aug 2019 in cs.CV

Abstract: Many state-of-the-art trackers usually resort to the pretrained convolutional neural network (CNN) model for correlation filtering, in which deep features could usually be redundant, noisy and less discriminative for some certain instances, and the tracking performance might thus be affected. To handle this problem, we propose a novel approach, which takes both advantages of good generalization of generative models and excellent discrimination of discriminative models, for visual tracking. In particular, we learn compact, discriminative and target-oriented feature representations using the Laplacian coding algorithm that exploits the dependence among the input local features in a discriminative correlation filter framework. The feature representations and the correlation filter are jointly learnt to enhance to each other via a fast solver which only has very slight computational burden on the tracking speed. Extensive experiments on three benchmark datasets demonstrate that this proposed framework clearly outperforms baseline trackers with a modest impact on the frame rate, and performs comparably against the state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.