Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Low-Rank Pairwise Alignment Bilinear Network For Few-Shot Fine-Grained Image Classification (1908.01313v3)

Published 4 Aug 2019 in cs.CV

Abstract: Deep neural networks have demonstrated advanced abilities on various visual classification tasks, which heavily rely on the large-scale training samples with annotated ground-truth. However, it is unrealistic always to require such annotation in real-world applications. Recently, Few-Shot learning (FS), as an attempt to address the shortage of training samples, has made significant progress in generic classification tasks. Nonetheless, it is still challenging for current FS models to distinguish the subtle differences between fine-grained categories given limited training data. To filling the classification gap, in this paper, we address the Few-Shot Fine-Grained (FSFG) classification problem, which focuses on tackling the fine-grained classification under the challenging few-shot learning setting. A novel low-rank pairwise bilinear pooling operation is proposed to capture the nuanced differences between the support and query images for learning an effective distance metric. Moreover, a feature alignment layer is designed to match the support image features with query ones before the comparison. We name the proposed model Low-Rank Pairwise Alignment Bilinear Network (LRPABN), which is trained in an end-to-end fashion. Comprehensive experimental results on four widely used fine-grained classification datasets demonstrate that our LRPABN model achieves the superior performances compared to state-of-the-art methods.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube