Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semi-supervised Thai Sentence Segmentation Using Local and Distant Word Representations (1908.01294v2)

Published 4 Aug 2019 in cs.CL

Abstract: A sentence is typically treated as the minimal syntactic unit used for extracting valuable information from a longer piece of text. However, in written Thai, there are no explicit sentence markers. We proposed a deep learning model for the task of sentence segmentation that includes three main contributions. First, we integrate n-gram embedding as a local representation to capture word groups near sentence boundaries. Second, to focus on the keywords of dependent clauses, we combine the model with a distant representation obtained from self-attention modules. Finally, due to the scarcity of labeled data, for which annotation is difficult and time-consuming, we also investigate and adapt Cross-View Training (CVT) as a semi-supervised learning technique, allowing us to utilize unlabeled data to improve the model representations. In the Thai sentence segmentation experiments, our model reduced the relative error by 7.4% and 10.5% compared with the baseline models on the Orchid and UGWC datasets, respectively. We also applied our model to the task of pronunciation recovery on the IWSLT English dataset. Our model outperformed the prior sequence tagging models, achieving a relative error reduction of 2.5%. Ablation studies revealed that utilizing n-gram presentations was the main contributing factor for Thai, while the semi-supervised training helped the most for English.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.