Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A hierarchical neural hybrid method for failure probability estimation (1908.01235v1)

Published 3 Aug 2019 in math.NA and cs.NA

Abstract: Failure probability evaluation for complex physical and engineering systems governed by partial differential equations (PDEs) are computationally intensive, especially when high-dimensional random parameters are involved. Since standard numerical schemes for solving these complex PDEs are expensive, traditional Monte Carlo methods which require repeatedly solving PDEs are infeasible. Alternative approaches which are typically the surrogate based methods suffer from the so-called ``curse of dimensionality'', which limits their application to problems with high-dimensional parameters. For this purpose, we develop a novel hierarchical neural hybrid (HNH) method to efficiently compute failure probabilities of these challenging high-dimensional problems. Especially, multifidelity surrogates are constructed based on neural networks with different levels of layers, such that expensive highfidelity surrogates are adapted only when the parameters are in the suspicious domain. The efficiency of our new HNH method is theoretically analyzed and is demonstrated with numerical experiments. From numerical results, we show that to achieve an accuracy in estimating the rare failure probability (e.g., $10{-5}$), the traditional Monte Carlo method needs to solve PDEs more than a million times, while our HNH only requires solving them a few thousand times.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube