Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exploring the Robustness of NMT Systems to Nonsensical Inputs (1908.01165v3)

Published 3 Aug 2019 in cs.LG, cs.CL, cs.CR, and stat.ML

Abstract: Neural machine translation (NMT) systems have been shown to give undesirable translation when a small change is made in the source sentence. In this paper, we study the behaviour of NMT systems when multiple changes are made to the source sentence. In particular, we ask the following question "Is it possible for an NMT system to predict same translation even when multiple words in the source sentence have been replaced?". To this end, we propose a soft-attention based technique to make the aforementioned word replacements. The experiments are conducted on two language pairs: English-German (en-de) and English-French (en-fr) and two state-of-the-art NMT systems: BLSTM-based encoder-decoder with attention and Transformer. The proposed soft-attention based technique achieves high success rate and outperforms existing methods like HotFlip by a significant margin for all the conducted experiments. The results demonstrate that state-of-the-art NMT systems are unable to capture the semantics of the source language. The proposed soft-attention based technique is an invariance-based adversarial attack on NMT systems. To better evaluate such attacks, we propose an alternate metric and argue its benefits in comparison with success rate.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.